Student Number_____

ASCHAM SCHOOL

2021

YEAR 12

TRIAL

EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 10 minutes.
- Working time 3 hours.
- Write using black non-erasable pen.
- NESA-approved calculators may be used.
- A NESA Reference Sheet is provided.
- All necessary working should be shown in every question.

Total marks - 100

- Attempt Sections A and B.
- Section A is worth 10 marks.
- Recommended time on Section A: 15 minutes
- Answer Section A on the multiple choice answer sheet.
- Detach the multiple choice answer sheet from the back of the examination paper.
- Section B contains 6 questions worth 15 marks each.
- Recommended time on Section B: 2 hours 45 minutes
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher.

SECTION A - 10 MULTIPLE CHOICE QUESTIONS10 MARKSANSWER ON THE ANSWER SHEET

Which of the following is closest to the angle between the vector $\underbrace{u} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$ and the

y-axis?

A 24°

B 36°

C 61°

D 109°

2

1

Which of the following is equivalent to the value of $\frac{2i}{e^{\frac{5\pi}{6}i}}$?

$$\begin{array}{ll}
\mathbf{A} & 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \\
\mathbf{B} & 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right) \\
\mathbf{C} & -2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \\
\mathbf{D} & 2\left(\cos\left(-\frac{2\pi}{3}\right) - i\sin\left(-\frac{2\pi}{3}\right)\right)
\end{array}$$

3 Which of the following is true? A $\forall x, y \in \mathbb{N}, \exists z \in \mathbb{Q} : z\sqrt{y} = \frac{x}{\sqrt{y}}$ B $\forall x, y \in \mathbb{R}, \exists z \in \mathbb{N} : z\sqrt{y} = \frac{x}{\sqrt{y}}$ C $\forall x, y \in \mathbb{Q}, \exists z \in \mathbb{Z} : z\sqrt{y} = \frac{x}{\sqrt{y}}$ D $\forall x, y \in \mathbb{Z}, \exists z \in \mathbb{R} : z\sqrt{y} = \frac{x}{\sqrt{y}}$ 4 Which of the following is a root of $z^5 + 1 = 0$?

$$\begin{array}{ll}
\mathbf{A} & \cos\left(\frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{5}\right) \\
\mathbf{B} & \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right) \\
\mathbf{C} & \cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right) \\
\mathbf{D} & \cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)
\end{array}$$

5

What is a possible graph of v^2 versus x for a particle moving in simple harmonic motion? A B

D

Ascham School 2021 Year 12 Trial Mathematics Extension 2 Examination

- 6 Which of the following is a counter-example to the following statement? *If you are over 60 then you must get the AstraZeneca vaccine.*
 - A If you are under 60 then you must not get the AstraZeneca vaccine.
 - **B** Jo is over 60 and got the Pfizer vaccine instead.
 - C Polly is under 60 and got the AstraZeneca vaccine.
 - **D** If you get the AstraZeneca vaccine you must be over 60.

7 The graph below is on the Argand diagram.

What is the equation of the graph?

- **A** |z-2-i|=3
- $\mathbf{B} \quad |z-2+i| = 9$
- $\mathbf{C} \quad |z+2-i| = 3$
- **D** |z+2+i|=9

8 A mass *m* kg is resting on a slope inclined at θ to the horizontal. Forces acting are the normal force *N*, a frictional force *F* and the gravitational force *mg*.

Which of the following is the correct resolution of forces in the horizontal direction?

- $\mathbf{A} \quad F\cos\theta N\sin\theta = 0$
- **B** $F\sin\theta N\sin\theta = 0$
- $\mathbf{C} \quad F\sin\theta N\cos\theta = 0$
- $\mathbf{D} \quad F\cos\theta N\cos\theta = 0$

9 A particle P is moving in simple harmonic motion. Its maximum speed is 6π m/s and its displacement then is 4 m. After 10 seconds it has reached its maximum speed again. What is a possible equation for the displacement of P?

A

$$x = 60 \sin\left(\frac{\pi t}{10}\right) + 4$$
B

$$x = 60 \sin\left(\frac{\pi t}{20}\right) + 4$$
C

$$x = 60 \sin(10t) + 4$$
D

$$x = 60 \sin(20t) + 4$$

10 Consider the complex numbers $z_1 = 1 - i$ and $z_2 = 1 + i\sqrt{3}$. What is the smallest positive value of *n* such that $\frac{(z_2)^n}{(z_1)^n}$ is purely imaginary?

- **A** 2
- **B** 4
- **C** 6
- **D** 8

SECTION 2 – 6 QUESTIONS EACH WORTH 15 MARKS

Question 11 – Begin a new writing booklet

a Find
$$\int \frac{x+1dx}{x^2+4}$$
.
b Find $\int_{1}^{2} \frac{1}{x(x+5)} dx$.
c Find $\int \tan^{6} x dx$
4

d Calculate the modulus and argument of the product of the roots of the equation $(5+3i)z^2 - (1-4i)z + (8-2i) = 0$

Question 12 – Begin a new writing booklet

$$p \in \mathbb{N}$$

Consider the statement for

If p has an odd number of distinct factors then p is a square number.

:

	i	Write the converse.	1
	ii	Write the contrapositive.	2
	iii	Write the negation.	2
	iv	Determine whether or not the statement is an equivalence. Give reasons. Is the statement true?	2
b		Let $z = x + iy$ where $x, y \in \mathbb{R}$. Sketch on an Argand diagram the points satisfying $z^2 - \overline{z}^2 = 8i$.	2
c		Find all complex numbers $z = x + iy$ where $x, y \in \mathbb{R}$ such that $ z ^2 + 5\overline{z} + 10i = 0$	3
d		Let $z_1, z_2 \in \mathbb{C}$ such that $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Prove that $ z_1 z_2 = z_1 z_2 $.	3

This page has been left intentionally blank.

Question 13 – Begin a new writing booklet

a

b

i

The 4 complex numbers z_1, z_2, z_3, z_4 are represented by the points Z_1, Z_2, Z_3, Z_4 **3** on an Argand diagram. If $z_1 - z_2 + z_3 - z_4 = 0$ and $z_1 - iz_2 - z_3 + iz_4 = 0$, what type of quadrilateral could $Z_1Z_2Z_3Z_4$ be?

Consider the line
$$l_1$$
 with equation $\frac{x-2}{3} = \frac{y+4}{2} = \frac{z-1}{-4}$.

Find the vector equation of any line l_2 that passes through the point P(1,2,3), which is perpendicular to l_1 . Is this solution unique?

ii If the lines l_1 and l_2 intersect, find the point of intersection.

3

3

Question 13 continues on the next page.

Question 13 continued

c Consider the triangle *ABC* shown. The perpendicular bisectors, *DO* and *FO*, of *AB* and *AC* respectively, intersect at *O*.

Copy the diagram.

Let
$$\overrightarrow{OA} = a, \overrightarrow{OB} = b, \overrightarrow{OC} = c, \overrightarrow{OD} = d, etc.$$

Use vectors to:

i

prove that
$$d = \frac{1}{2}(a + b)$$
 1

ii prove that A,B and C all lie on a circle with centre O, ie
$$|\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}|$$
 2

iii prove that the perpendicular bisector of BC, that is, EP passes through O. 3

Ascham School 2021 Year 12 Trial Mathematics Extension 2 Examination

Question 14 - Begin a new writing booklet

a i
If *a*, *b* are real, show that
$$\frac{a^2 + b^2}{2} \ge ab$$
.

ii Hence, or otherwise, show that if a, b, c, d are real and $a, b, c, d \ge 0$ then $\sqrt{(a^2 + c^2)(b^2 + d^2)} \ge ab + cd$.

b Prove that
$$\int_0^a f(x) dx = \int_0^a f(a-x) dx$$
 using the substitution $u = a - x$.

Hence evaluate
$$\int_0^2 x(2-x)^{10} dx$$
. 3

- c Prove by the contrapositive that if *m* and *n* are positive integers such that m + n and 3 m n have no common factors, then *m* and *n* have no common factors.
- **d** Consider the maximum number *N* of possible points of intersection of *n* lines on a plane, as shown in the series of diagrams below.

i Copy and complete the table:

ii Prove by induction that the maximum number N of points of intersection of n lines 3 is

$$N = \frac{n(n-1)}{2} \text{ for } n \ge 2.$$

2

Question 15 – Begin a new writing booklet

Find the four 4th roots of
$$-\frac{1}{2} + \frac{i\sqrt{3}}{2}$$
 and show them on an Argand diagram.

b A body of mass M kg is being suspended by two strings of differing lengths l_1 and l_2 attached to the mass and then to either end of a horizontal rod as shown in the diagram. Acceleration due to gravity is $g \text{ m/s}^2$.

The tensions in l_1 and l_2 are T_1 and T_2 (Newtons) respectively. Show that the tension T_1 in the string l_1 is given by

$$T_1 = \frac{Mg\cos\beta}{\sin(\alpha+\beta)}$$

Let

c

ii

a

$$I_n = \int \frac{dx}{\left(x^2 + 1\right)^n}$$

•

i Show that
$$\int \frac{dx}{(x^2+1)^n} = \int \frac{dx}{(x^2+1)^{n-1}} - \int \frac{x^2 dx}{(x^2+1)^n}$$
. 1

Use the identity above to find constants A and B such that $I_n = \frac{Ax}{(x^2 + 1)^{n-1}} + BI_{n-1}$.

Hence, or otherwise find
$$\lim_{k \to \infty} \int_0^k \frac{dx}{(x^2 + 1)^2}$$
.

4

Question 16 – Begin a new writing booklet

a A hose is at *O* and aimed to hit a vertical wall which is *c* metres along the horizontal **4** ground from *O*. The hose water comes out at a speed *V* m/s and is aimed at an angle θ from the horizontal where $0^{\circ} < \theta < 90^{\circ}$. Take *g* m/s² as acceleration due to gravity and ignore air resistance.

Show that the hose water will reach the wall if and only if $V > \sqrt{gc}$.

b i
Show that
$$1 + r + r^2 + r^3 + ... + r^{n-1} = \frac{1 - r^n}{1 - r}$$
 for $r \neq 1$.

ii As
$$n \to \infty$$
, find an expression for $1 + r + r^2 + r^3 + \dots + r^{n-1}$ for $0 < r < 1$.

iii Prove that for
$$0 < x < 1$$
, $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots + \frac{x^n}{n} + \dots = -\ln(1-x)$.

Question 16 continues on the next page.

Question 16 continued

с

Two particles P_1 and P_2 are moving with velocities v_1 and v_2 respectively in Simple Harmonic Motion along the same axis according to the equations

$$x_1 = A + \sin nt$$

$$\ddot{x}_2 = -n^2 x_2$$
 where $n, A \in \mathbb{R}$ and $n, A > 0, t \ge 0$.

Initially, $x_1 = A$, $x_2 = 1$ and $v_2 = 0$.

Assume the value of A is such that the particles never meet.

i Show that
$$\dot{x}_1^2 = n^2 \left(1 - (x_1 - A)^2 \right).$$
 2

- ii Show that $\dot{x}_2^2 = n^2 (1 x_2^2)$.
- iii Find the minimum distance between the two particles.

The end! 🙂

2

3

This page has been left intentionally blank.

Student Number

ASCHAM SCHOOL

YEAR 12 Trial Mathematics Extension 2 Exam

MULTIPLE-CHOICE ANSWER SHEET

1.	A O	BO	C O	D O
2.	A O	BO	C O	D O
3.	A O	BO	C O	D O
4.	A O	BO	C O	D O
5.	A O	BO	C 🗢	D O
6.	A O	BO	С О	D O
7.	A O	BO	С О	D O
8.	A O	BO	С О	D O
9.	A O	BO	C O	D O
10.	A O	BO	C O	D O

This page has been left intentionally blank.

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL MULTIPLE CHOICE 1 2 5. v2>0 1. y-axis is (0,1,0) say. $-4 \le \chi \le 0$ K. y = Iully/ Cost 7x 0 $\therefore Con \theta = 3(0) + 5(1) - 2(0)$ $\sqrt{3^2+5^2+(-2)^2}\sqrt{0^2+1^2+0^2}$ 6. (B) Jo is over 60 and did $\theta \approx 36^{\circ}$ not get the Astra 2 vaccine $2. \frac{2i}{\frac{5\pi}{6}i} = \frac{2e^{\frac{1}{2}i}}{\frac{5\pi}{5\pi}}$ 7. Centre (-2,1) -2+i, r=3 STII |z - (-2 + i)| = 3 $= 2 e^{\frac{t}{6}}$ |z+2-i|=3C = 2 e i (- 11/3) 8. Frind $= 2\left(\cos\left(\frac{-\Pi}{3}\right) + 1\sin\left(\frac{-\Pi}{3}\right)\right)$ NonO FCOND & Nisind = 2 (Cas II - ism (II)) $=2(\frac{1}{2}-\frac{1}{2})$ Vmq_ O'. = 2 (- cos 211 - isin (211) Horizontal: Fcos & - Nem &= 0 9. x = A sin nt + k x = Ancosnt -15 cosnt =1 $z\sqrt{y} = \frac{x}{\sqrt{y}} \quad \text{or } zy = x$ 3. Max speed = An = 6TT = if y>0 Max speed difference = 2 $or z = \frac{x}{y}$ Penod = 2th n $\forall x, y \in \mathbb{N}, \exists z \in \mathbb{Q} : z \sqrt{y} = \frac{x}{\sqrt{y}}$ 4. z5+1=0. z5=-1 $20 = \frac{2\pi}{10}$: $h = \frac{2\pi}{20} = \frac{\pi}{10}$ $\therefore A\left(\frac{\pi}{10}\right) = 6\pi \quad \therefore \quad A = 60.$: x=60 sin(To t) + 4 (A)

PTO

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL H MULT. CHOICE cont'd 10. $Z_1 = 1 - i$, $Z_2 = 1 + i\sqrt{3}$. $10. \quad z_{1} = i \quad z_{2} = i \quad z_{2} = i \quad z_{1} = i \quad z_{2} = i$ $\left(\frac{2 \operatorname{cis} \frac{\pi}{3}}{\sqrt{2} \operatorname{cis} \frac{\pi}{4}} \right)^{n} = \left(\sqrt{2} \operatorname{cis} \left(\frac{\pi}{3} - \frac{\pi}{4} \right) \right)^{n}$ $= \left(\sqrt{2} \right)^{n} \left(\operatorname{cis} \left(\frac{\pi}{12} \right) \right)^{n}$ $ki = (\sqrt{2})^n \left(cis \frac{h \overline{u}}{12} \right)$ $as \frac{\pi}{2} = as \frac{6\pi}{12} is imagina,$ h = 6.(C)

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL Jg φII $d) (5+3i)z^2 - (1-4i)z + (8-2i) = 0$ a) $\int \frac{\chi + 1 \, d\chi}{\pi^2 \pm 4} = \int \frac{\chi}{\chi^2 \pm 4} + \frac{1}{\chi^2 \pm 4} \, d\chi$ Product of roots = $\frac{c}{a}$ $3 = \frac{1}{2} \ln |x^2 + 4| + \frac{1}{2} \tan^{-1} \frac{x}{2} + c$ $= \frac{8-2i}{5+3i} \times \frac{5-3i}{5-3i}$ b) $\int \frac{1}{x(x+5)} dx = \int \frac{A}{x} + \frac{B}{x+5} dx$ = 40 - 6 - 10i - 24i25 + 9(4) $f_{0} = A(x+5) + Bx$ = 34 - 341 x = -5 I = Bx - 5 = -1= 1-i x=0 $l=5A \Rightarrow A=\frac{1}{5}$ $|1-i| = \sqrt{1+1}$ $: \int_{-\infty}^{2} \frac{1}{x(x+5)} dx = \int_{-\infty}^{2} \frac{1}{5} \frac{1}{x-5} \frac{1}{x+5} dx$ $arg(1-i) = \overline{\underline{T}}$ $= \frac{1}{5} \left[\frac{\ln |x| - \ln |x+5|}{1} \right]$ $4 = \frac{1}{5} \left[\frac{\ln |2| - \ln |7| - (\ln |1| - \ln |6|)}{\ln |6|} \right]$ $= \frac{1}{5}(\ln|2| - \ln|7| + \ln|6|)$ = + ln 12 A c) I tan ze dze = Stan x. tan x dx = (tan *x (sec²x-1)dx (4) = Stan * x sec * - Stan * x dx $= \frac{\tan 5x}{-} - \int \tan^2 x \cdot (\operatorname{ALC}^2 x - i) dx$ = tan x - Stan x sec x - tan x dsc = tan 5x - tan 3x - Sec x-1dx = tan 5x - tan 3x + tan x #x+C

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL 2 Q12 a) |z| + 5 = +10i =0 a) i) Converse of P=>Q is Q=>P. $|x+iy|^2 + 5(x-iy) = -10i$ If p is a square number then $x^2 + y^2 + 5x - 5iy + 10i = 0$ phas an odd number of Equate reals and imaginaries: distinct factors. $\chi^2 + y^2 + 5\chi = 0$, $-5\pi y + 10\pi = 0$ ii) Contrapontive g P⇒Qio 54 = 10 $x^{2}+2^{2}+5x=0$ y=2 7Q=>7P. $x^2 + 5x + 4 = 0$ If p is not a square number (x+4)(x+1)=0then places not have an odd x = -4 or x = -1, y = 2. 3 = -4 + 2i, or -1 + 2i d) RTP: $|z_1||z_2| = |z_1, z_2|$ number of distinct factors.⁽²⁾ iii) The negation: (2) PLOOF: LHJ = /2,//22/ There exists an number p = |x, + iy, / | x 2 + iy 2 / with an odd number of distinct factors such that $(3) = \sqrt{\chi_1^2 + y_1^2} \sqrt{\chi_2^2 + y_2^2}$ p is not a square number. $= \sqrt{(\chi_{1}^{2} + y_{1}^{2})(\chi_{2}^{2} + y_{2}^{2})}$ iv) It is an equivalence $RHS = |Z,Z_2|$ because both P=>Q AND $= |(x_1 + iy_1)(x_2 + iy_2)|$ JQ ⇒ JP are true. The statement is true. 2 $= |\chi_1 \chi_2 + \chi_1 i y_2 + \chi_2 i y_1 + - y_1 y_2|$ $= [(x_1, x_2 - y_1, y_2) + i(x_1, y_2 + x_2y_1)]$ eg. 36 = 6². Factors Come in pairs except for 6: $= \int (x_{1}x_{2} - y_{1}y_{2})^{2} + (x_{1}y_{2} + x_{2}y_{1})$ 1,36,18,2,12,3,9,4,6. $= \sqrt{\chi_{1}^{2}\chi_{2}^{2} - 2\chi_{1}\chi_{2}y_{1}y_{2} + y_{1}^{2}y_{2}^{2} \cdots}$ b) $z^2 - \bar{z}^2 = 8i$. $(x+iy)^{2} - (x-iy)^{2} = 8i^{2}$ $... + \chi_1^2 y_1 + 2\chi_1 \chi_2 y_1 y_2 + \chi_2^2 y_1^2$ (x+iy - x+iy)(x+iy+x-iy)=8i $= \int \chi_{1}^{2} \chi_{2}^{2} + \chi_{1}^{2} y_{2}^{2} + y_{1}^{2} y_{2}^{2} + y_{1}^{2} \chi_{2}^{2}$ (1,2) $2iy \times 2x = 8i$ $= \sqrt{\chi_{1}^{2}(\chi_{2}^{2}+y_{2}^{2})+y_{1}^{2}(y_{2}^{2}+\chi_{2}^{2})}$ 4txy=&t 2 $= \sqrt{\left(\chi_{2}^{2} + y_{2}^{2}\right)\left(\pi_{1}^{2} + y_{1}^{2}\right)}$ $\chi \dot{y} = 2.$ $LHS ||Z_2| = |Z_1Z_2|$

3 Solutions to 2021 Math Ext 2 TRIAL Title: As cham 22 13 a) Let direction be I to l, :. la direction is (3) where Z3 $\begin{pmatrix} 3\\2\\-4 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} = 0 \quad ie \quad 3a+2b-4c=0$ Say a=2, b=3, c=33\$ $z_1 - z_2 + z_3 - z_4 = 0$ then l_2 is $\begin{pmatrix} \chi \\ \gamma \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}$. $\therefore Z_1 - Z_2 = Z_4 - Z_3$:. 2,-22 is parallel to 24-23 Not a unique solution ii) l, and lz intersect at say and |2,-22 = |24-23 (p,q,t), and l, 1 l2 50 :. Z, Z, Z, Zy has one pair of opposite sides equal and l2 (1,2,3) (2,-4,1) $\begin{pmatrix} 3\\2\\-4 \end{pmatrix}$ parallel : could be a parm. 3 P,q,r) Also, Z, - iZ2 - Z3 + iZ4 = 0 $z_{1} - z_{3} = i(z_{2} - z_{4})$ l_1 : z, -Z, is same as z2-24 only perpendicular ... $a = P^{-1}$ I a, b, c such that Z, Z2Z3Z4 hes equal dragonals) $b = 2^{-2}$ c = + - 3and 3a + 2b - 4c = 0That are perpendicular as well as a pair of opporte and $\begin{pmatrix} P \\ q \end{pmatrix} = \begin{pmatrix} 2 \\ -q \\ l \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ -q \end{pmatrix}$ sides equal and parallel It must be $a=2+3\lambda-1$ $\therefore p = 2 + 3\lambda$ 50 $\dot{q} = -4 + 2\lambda$ $= 1+3\lambda$ a square. $b = -4 + 2\lambda - 2$ $r = 1 - 4\lambda$ $= -6 + 2\lambda$ $c = 1 - 4\lambda - 3$ $= -2-4\lambda$ $\therefore 3a+2b-4c=0$ b) $l_1: \frac{x-2}{3} = \frac{y+4}{2} = \frac{z-1}{-4} = \lambda$ $3(1+3\lambda)+2(-6+2\lambda)-4(-2-4\lambda)=0$ $3 + 9\lambda - 12 + 4\lambda + 8 + 16\lambda = 0$ i) $l_1 : x = 3\lambda + 2$ (3) $Y = 2\lambda - 4$ $-1+29\lambda=0$ $3 = -4\lambda + 1$ $\therefore \lambda = \frac{1}{29}$ Point is $\left(2+\frac{3}{2q},-4+\frac{2}{2q},1-\frac{4}{2q}\right)$ $\operatorname{or} \begin{pmatrix} \chi \\ y \\ -\chi \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ $\left(\frac{2}{2}\frac{3}{29}, -3\frac{27}{24}, \frac{25}{29}\right).$

Solutions to Title: As cham 2021 Math Ext 2 TRIAL Q13 contd Given OF L AC c) then OF. AC = 0 \therefore f. (c-a) = 0 $\frac{1}{2}\left(\frac{a+c}{a+c}\right)\cdot\left(\frac{c-a}{a}\right)=0$ a Ē $\therefore \mathbf{C} \cdot \mathbf{C} - \mathbf{a} \cdot \mathbf{a} = 0$ (2) $|c|^{2} = |a|^{2}$ $\therefore |\vec{oc}| = |\vec{oA}| = |\vec{oB}| \quad q \in D!$ i) RTP: $d = \frac{1}{2}(a+b)$ Proof: Given AD = 1/AB iii) $RTP: \vec{PE} = \lambda \vec{EO}$. $\therefore d - a = \frac{1}{2} \left(\frac{b}{a} - a \right)$ Prof: We know that $\underline{e} = \frac{1}{2}(\underline{c} + \underline{b}).$ Also $\left| \overrightarrow{OC} \right| = \left| \overrightarrow{OB} \right|$. $d = \frac{1}{2}b - \frac{1}{2}a + a$ If EP is the perp. bisector then $= \frac{1}{2} b + \frac{1}{2} a$ = 1 (a+b) QED!!! EP BC=0 $\therefore (\underline{p}-\underline{e}).(\underline{c}-\underline{b})=0$ ii) $RTP: |\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}|$ Proof: Given OD AB $\therefore \left(\underline{p} - \frac{1}{2} \left(\underline{c} + \underline{b} \right) \right) \cdot \left(\underline{c} - \underline{b} \right) = 0$ then $\overrightarrow{DD} \cdot \overrightarrow{AB} = 0$ $(d - 0) \cdot (b - a) = 0$: p. (c - b) - - 2 (c.c - b.b) = 0 $\therefore p \cdot (c - b) - \frac{1}{2}(|c|^2 - |b|^2) = 0$ $\therefore \pm (a+b) \cdot (b-a) = 0$ but |c|2 = 16/2 $\frac{1}{2}\left(b.b - a.a\right) = 0$ $\therefore p.(x-b) - \frac{1}{2}(0) = 0$ (3) $|b|^2 - |a|^2 = 0$ $\therefore p.(c-b) = 0$ |b| = |a| (|a|,|b| > 0) $\therefore (\mathbf{p} - \mathbf{0})(\mathbf{c} - \mathbf{b}) = \mathbf{0}$ |OB| = |OA|. .. OP L CB but EP_ Co as well Similarly we can see that : $P must lie on \overline{OE}$ or $\overline{PE} = \overline{\lambda EO}$. $f = \frac{1}{2} \left(a + c \right)$.: EP passis through O.

 $(\mathbf{5})$ Solutions to Title: Ascham 2021 Math Ext 2 TRIAL Q14ai) RTP: a2+6 >, ab b) i) RTP: $\int f(x) dx = \int f(a-x) dx$ Proof: Consider the difference: Let u = a-x then x=0=> u=a du = -1dx $\chi = \alpha \Rightarrow u = 0$ $a^2 + b^2 - ab = a^2 + b^2 - 2ab$ \therefore RHS = $\int_{-\infty}^{\infty} f(a-x) dx$ $= (a-b)^2 \quad \bigcirc$ $= \int_{0}^{u} f(u) \cdot - I du$ >> 2 Since (a-b) >0 $\frac{a^2+b^2}{2} > ab.$ $= \int_{a}^{a} f(u) du$ ii) $RTP: \sqrt{(a^2+c^2)(b^2+d^2)} \ge ab+cd.$ = $\int_{0}^{a} f(x) dx$ (dæmmy variable) Proof: Using the fact that y JP ≥ Q and P, Q≥0 b) ii) $\int_{-\infty}^{2} x (2-x)^{10} dx$ let a=2then $P \ge Q^2$ and if P>p² and P,A>0 $= \int (2-x)(2-(2-x))^{10} dx$ then JP >Q. So RTP: $(a^2 + (c^2)(b^2 + d^2) \ge (ab + cd)^2)$ $= \int_{-\infty}^{2} (2-x)(x)^{10} dx$ Proof: Consider the difference. $= \int_{-\infty}^{\infty} 2x^{10} - x^{11} dx$ $(a^{2}+c^{2})(b^{2}+d^{2})-(ab+cd)^{2}$ $= a^{2}b^{2} + a^{2}d^{2} + c^{2}b^{2} + c^{2}d^{2}$ $=\int \frac{2x}{11} - \frac{x}{12} \int_{-\infty}^{\infty}$ $= a^{2}b^{2} + a^{2}d^{2} + c^{2}b^{2} + c^{2}d^{2}$ $= a^{2}b^{2} + a^{2}d^{2} + c^{2}b^{2} + c^{2}d^{2}$ $= 2(2'') - \frac{2^{12}}{12} - (0 - 0)$ - 262 - c212 - 2abed $= 12(2^{12}) - 11(2^{12})$ $= a^{2}d^{2} + c^{2}b^{2} - 2abcd$ = $(ad + cb)^{2}$ 2) 132 $= 2^{12}$ $(a^{2}+b^{2})(b^{2}+d^{2}) \ge (ab+cd)^{2}$ >0 since square 132 $= \frac{2^{10}}{33}$ $\sqrt{(a^2+c^2)(b^2+d^2)} \ge ab+cd.$ (since a, b, o, d 7,0)

Solutions to
Title: A Scham 2021 Math Ext 2 TR1AL.
14 contd
14 contd
c) Proof by Contrepositive:
RTP: If min are integers
with the common factor.
Proof: Let m=kp and

$$h = kg$$
 where p_1g are integers
and k is an integer and
the common factor.
 $Piorf: Let m=kp$ and
 $h = kg$ where p_1g are integers
and k is an integer and
the common factor g man.
 $h = kg (p+g)$ (3)
and $m-n = kp-kg$
 $= k(p-g)$
 \therefore $m+n$ and $m-n$ hore
 $h = common factor k$.
 \therefore $n = k (p-g)$
 \therefore $m+n$ and $m-n$ hore
 $h = common factor k$.
 \therefore $n = k (p-g)$
 \therefore $m+n$ and $m-n$ hore
 $h = common factor k$.
 \therefore $N = k(k-1) = kk$
 $points g intersection.
 $= k(p-g)$
 \therefore $m+n$ and $m-n$ hore
 $h = common factor k fear
 m and n have near QE .
 $ii) RTP: N = n(n-1) = n = 2$
 $k (p + p(2) true.$
 $iii) RTP: N = n(n-1) = n = 2$
 $k (p + p(2) true.$
 $iv = for k sign for kere
 $h = common factor k fear
 m and n have near QE .
 $iii) RTP: N = n(n-1) = n = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = 2k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = k + k = 2$
 $k (k+1) = k = 2$
 $k (k+1) = k = 2$
 $k (k + 1) = 2$
 $k (k + 1) = 2$
 $k (k + 1) =$$$$$

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL Q15 15 b) contd : a) Let $z^4 = -\frac{1}{2} + \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2$ T, (sin (d+B)) = MgcosB $z_i = lst$ root = $c_i \left(\frac{2\pi}{3} \div 4 \right) = c_i s \frac{\pi}{6}$: TI = Mg cosB PED! Z2 $\frac{Sin(\alpha + \beta)}{C} = \int \frac{dx}{(x^2 + 1)^n}$ Cis H i) RTP: $\int \frac{dx}{\sqrt{2}}$ (4) 23 $\int \frac{dx}{\left(\chi^{2}+1\right)^{n-1}}$ x du 24 others equally spaced 2TT = TT = TT = - Juzda $RHS = \int \frac{dx}{(x^2 + 1)}$ how z. noof: M-1 $Z_2 = \operatorname{cis}\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = \operatorname{cis}\frac{2\pi}{3}$ $\frac{\left(\chi^{2}+1\right)d\chi}{\left(\chi^{2}+1\right)^{n}}$ $-\frac{x^2dx}{x}$ $z_3 = c_1s\left(\frac{\pi}{6} + \pi\right) = c_1s\frac{7\pi}{7}$ $Z_{4} = \operatorname{Cis}\left(\frac{1}{6} - \frac{1}{2}\right) = \operatorname{Cis}\left(-\frac{1}{3}\right)$ $\frac{x^2+1-x^2dx}{(x^2+1)^n}$ b) QED! $\frac{dx}{(x^2+1)^n} = LHS$ $= \frac{A_{2}}{(\pi^{2}+1)^{n-1}} + BI_{n-1}$ Forces: Ticond Tz Conp Ti Tz Ti Tz In ie $T_n = \frac{A_{\chi}}{(\chi^2 + 1)^{n-1}} + B_{\chi}$ 4 Mg /x dx $\left(\frac{dx}{x^2+1}\right)$ Now: In= Horizontally: 1-1 (x2+1) Ticond - Tz Con B = D $= \int \frac{dx}{(x^2+1)^{n-1}}$ x. /x dx (x²+1)ⁿ $T_1 \cos d = T_2 \cos \beta \Rightarrow T_2 = T_1 \cos d$ See on Co.B $= \int \frac{dx}{(x^2+1)^{n-1}}$ Vertically : [volu ut -Tisind + Tz am B - Mg = 0 4 where u = X T, Sin & + T, Cos & Sin B = Mg du = Idx T, sind Cas B + T, Cas & Sing = Mg Cos B $dv = \frac{1}{2} \cdot \frac{2\pi}{2}$ T, (Since cos B + cos & cin B) = Mag cos B = 1. 2x (x2+1 PTO

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL 8 Q15 Contd c) ii) $\int \frac{dx}{(x^2+1)^n} = \int \frac{1dx}{(x^2+1)^{n-1}} - \int \frac{x \cdot x \, dx}{(x^2+1)^{n-1}}$ Now $\int \frac{1 \, dx}{(x^2 + 1)^{n-1}} = I_{n-1}$ $\int \frac{\chi \cdot \chi \, dx}{\left(\chi^2 + 1\right)^n} = \int u \, dv$ = $uv - \int v \, du$ Let u = xdu = dx $dv = x(x^2+1)^{-h}dx$ $v = \frac{1}{2(-n+1)} (\chi^2 + 1)^{-n+1}$ $= \frac{1}{2(1-n)(\chi^{2}+1)^{n-1}}$ $= \chi \cdot \frac{1}{2(1-n)(\chi^{2}+1)^{n-1}} - \int \frac{1}{2(1-n)(\chi^{2}+1)^{n-1}} dx$ $= \frac{x}{2(1-n)(\chi^{2}+1)^{n-1}} + \frac{1}{2n-2} \int \frac{1}{(\chi^{2}+1)^{n-1}} dx$:. $I_n = I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} \frac{x}{2n-2} I_{n-1}$ $= \frac{x}{(2n-2)(x^{2}+1)^{n-1}}$ + (2n-2) In-1 #1 In-1 2n-2 $= \frac{x}{(2n-2)(x^2+1)^{n-1}} + \frac{2n-3}{2n-2} I_{n-1}$ $A = \frac{1}{2\mu_{-2}}, B = \frac{2\mu_{-3}}{2\mu_{-2}}$

Solutions to Title: As cham 2021 Math Ext 2 TRIAL Q15 control c) iii) $\lim_{k \to \infty} \frac{k}{(x^2+1)^2}$ n = 2 $= \lim_{k \to \infty} \left(\frac{1}{2(2)-2} \left[\frac{x}{(x^{2}+1)^{\prime}} \right]_{0}^{k} + \frac{2(2)-3}{2(2)-2} \left[\frac{1}{(x^{2}+1)^{\prime}} \right]_{0}^{k} + \frac{2(2)-3}{2(2)-2} \left[\frac{1}{(x^{2}+1)^{\prime}} \right]_{0}^{k}$ $=\lim_{k \to \infty} \left[\frac{1}{2} \left(\frac{k}{k^2 + 1} - 0 \right) + \frac{1}{2} \left(\frac{1}{4an} \frac{k}{k} \right) \right]$ $= \frac{1}{2}(0) + \frac{1}{2}(\frac{\pi}{2}-0)$ = $\frac{1}{4}$ 2

Solutions to Title: Ascham 2021 Math Ext 2 TRIAL 166) cent'd iii) For OLXLI RTP: $\chi + \frac{\chi^2}{2} + \frac{\chi^3}{2} + \frac{\chi^4}{n} + \dots = -\frac{\chi^4}{n} + \dots = -\frac{\chi^4$ Proof: From (ii) $1 + r + r^2 + \dots + \dots = \frac{1}{1 - r} for$ 0LrL1 $\int_{0}^{\infty} \frac{1}{1+r+r^{2}+\dots+\dots+r} dr = \int_{0}^{\infty} \frac{1}{1-r} dr$ $: \left[r + \frac{r^{2}}{2} + \frac{r^{3}}{3} + \dots + \frac{r^{n}}{n} + \dots \right]^{x} = \left[l_{n} \left| 1 - r \right| \right]_{0}^{x}$ $\therefore x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots - (0 + 0 + 0 + \dots)$ $= - \left[ln / 1 - x - ln / 1 - 0 \right]$ $\therefore x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + \frac{x^{n}}{n} + \dots = -\frac{\ln|1 - x| + 0}{\ln|1 - x| + 0}$ QED !!! $= -l_{1}/1-x/.$ 2

Solutions to Title: Ascham 2021 Math Ext 2 Tral Q16 contd Qlb c) ii) could : $\therefore \frac{1}{2} v_2^2 = -\frac{n^2 x_2^2}{2} + \frac{n^2}{2}$ c) $\leftarrow \chi_2 \rightarrow \leftarrow \chi_1 \rightarrow$ -1 0 1 A Z $: v_2^2 = -n^2 \chi_2^2 + n^2$ X = A+smnt $v_{2}^{2} = m^{2} (1 - \chi_{2}^{2})$ $\ddot{\chi}_2 = -n^2 \chi_2.$ $\dot{x}_{2}^{2} = n^{2} (1 - \chi_{2}^{2}) \quad QED!!$ $t=0, \ \varkappa_1=A, \ \varkappa_2=1.$ i) RTP: $\dot{x}_{1}^{2} = n^{2} (1 - (x_{1} - A)^{2})$ iii) Since $x_2 = -n^2 x_2$ we Proof: x, = A + smint know the centre of motion is O. Also, when t=0, v=0 i, = ncosnt When x2 = 1 ... P2 is oscillating $\dot{x}_{1}^{2} = n^{2} cos^{2} nt \qquad (2)$ around O with amplitude 1 $x_1 - A = sin nt$ starting at 1 :. convenient equation is $x_2 = l cosnt$. $\therefore (x, -A)^2 = sin^2 nt$ Since x, is oscillating around Now cosint + sin int = 1 A where A>O then $\dot{x}_{1} = n^{2} \cos^{2} n t$ minimum distance is given by : $\dot{x}_{1}^{2} = n^{2}(1 - \sin^{2}nt)$ X1-X2 minimised. = $n^{2}(1-(x_{1}-A)^{2})_{\text{QED},1/1}$: $x_{1}-x_{2}=A+\text{Signat-cosnt}$ ii) RTP: $\dot{\chi}_{2}^{2} = n^{2} \left(1 - \chi_{2}^{2} \right)$. dt (A + smint - cos nt) = 0 ncesnt + nsmnt = 0 (3) $\frac{P_{Loof}}{r} : \mathbf{x}_2 = -h^2 \mathbf{x}_2$ smint = - cosnt $\frac{d}{dx_{1}}\left(\frac{1}{2}v_{2}^{2}\right) = -n^{2}x_{2} \quad (2)$ tannt = -1 $t \ge 0$ $\frac{1}{2}v_{2}^{2} = \int -n^{2}x_{2}dx_{2}$ $ht = \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{11\pi}{4}, \frac{15\pi}{4}, \dots$ $\frac{1}{2}v_{2}^{2} = -\frac{n^{2}x_{2}^{2}}{1} + C$ $t = \frac{3\pi}{4n}, \frac{7\pi}{4n}, \frac{11\pi}{4n}, \frac{15\pi}{4n}, \dots$ When t=0, $x_2=1$, $v_2=0$: We can see from sketch that minimum is when $0 = -n^{2}(1)^{2} + C$ t= 74/2. $\therefore C = \frac{h}{2}$ PTD

13 Solutions to Title: Ascham 2021 Math Ext 2 Trial Q16 contd c) iii) contd : Min distance = A + sin K (71) - cos K (71) 44) - cos K (71) = A + -L - L $\sqrt{2}$ $\sqrt{2}$ $= A - \frac{2}{\sqrt{2}}$ = A - JZ assuming A > JZ! A ヨーン 27 ģπ T 6 2 -1